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38 rue Général Leclerc Issy-les-Moulineaux FRANCE 3, rue Joliot-Curie Gif sur Yvette FRANCE

E-mail : (zakaria.nouir,berna.sayrac,benoit.fourestie)@francetelecom.com E-mail : (tabbara,brouaye)@lss.supelec.fr

Keywords—Artificial Neural Networks, Independent Com-
ponent Analysis, Radio Network Prediction, Hybrid Simu-
lation.

Abstract— We propose a method to enhance the quality
and precision of prediction results using measurements in
the context of radio network modelling. The proposed me-
thod involves the use of an Independent Component Analy-
sis (ICA) block and a MultiLayer Perceptron (MLP) Arti-
ficial Neural Network (ANN). The role of the ICA block is
to make the variables at the input of the ANN statistically
independent so that it can perform its learning and predic-
tion on individual one-dimensional distributions.
The application of the proposed method to a third genera-
tion cellular radio network prediction tool has shown that
without ICA, ANN training has a poor performance. We
have also shown that, in the proposed scheme, ICA performs
better than Principle Component Analysis (PCA). This en-
hancement method can advantageously be used to calibrate
prediction results according to measurements.

I. Introduction

To simulate a complex system one can resort to two types
of simulation principles. The first is based on the use of the
a priori knowledge of the system at hand, i.e. the real phy-
sical phenomena are represented by mathematical models
[Centeno and Reyes, 1998] (see figure 1). The second is ba-
sed on the use of the a posteriori information, i.e. measured
data characterizing the real system, to train an automatic
learning system such as a neural network [Andrea et al.,
2000] (see figure 2).
Because of inevitable model simplifications, the first me-
thod yields discrepancies between simulation results and
reality. On the other hand, the second method resorts to
uncontrolled and unrealistic parameters, and provides little
physical insight of the system.
To overcome those drawbacks, we propose an original joint
utilization of the two known complex-system simulation
principles, i.e. of both the a priori and the a posteriori in-
formation, by making use of the measurement data in the
simulation tool to enhance the simulation results (figure 3).
We thus show that the combined utilization of physical
models and measurement data can reduce the discrepancy
between simulations and reality. To the best of our know-
ledge, this is the first work that propose this combination
in the radio network context.

A MultiLayer Perceptron Artificial Neural Network with
BackPropagation learning algorithm is used to find the
stochastic mapping (transfer function) between the mea-
surements and the simulations. The ANN is a two-phase
learning system (learning phase and validation/prediction
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Fig. 2. System simulation using a posteriori information

phase). In the learning phase, two sets of data samples
(the measurement data at hand and the simulation data)
are presented to the MLP in order to learn the transfer
function. In the validation/prediction phase, a validation
data set is passed through the MLP to yield enhanced pre-
dictions.

Since we are interested in the statistical features of the
variables rather than in the individual sample values, we
propose that the ANN works on statistical distributions of
the variables. This approach has been used for the face de-
tection problem and has proven to yield good results [Wa-
ring and Liu, 2005].
To keep the computational complexity of the learning pro-
cess tractable without loosing the joint statistical proper-
ties of the variables, a preprocessing block of Independent
Component Analysis (ICA) that allows us to work with
individual 1-D distributions is used.

The proposed method is applied to a third generation
(3G) cellular mobile network. The numerical results in the
form of the analytical Kolmogorov-Smirnov test [Gabriel,
1978] show that the proposed approach is able to perform
significant improvement on the training process results.

The remainder of this paper is structured as follows : In
Section II we give a short overview of ICA theory. A de-
tailed description of the proposed scheme is given in Sec-
tion III. Section IV is devoted to a case study based on
a 3G Radio Network Planing (RNP) tool followed by the
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Fig. 3. System simulation using a priori and a posteriori information

results. Finally, Section V gives the concluding remarks.

II. Independent Component Analysis

ICA is a linear technique that aims at extracting inde-
pendent features from a data set. Unlike Principle Compo-
nents Analysis (PCA) which simply decorrelates the data,
ICA searches a linear, non-orthogonal coordinate system in
the data-space whose components are independent across
all statistical orders. ICA has been successfully applied to
many problems such as the blind source separation pro-
blem [Amari et al., 1998], separation of artifacts in magneto
encephalograph data [Vigario et al., 1998], finding hidden
factors in financial data [Kiviluoto and Oja, 1998], etc.

The statistical ICA model describes how the observed
data x1, x2, . . . xn are generated by a process of mixing
the independent non-gaussian components s1, s2, . . . , sm.
It can be written as : x = As where x is the observation
vector composed of n linear mixtures xi of m components
si.
In the following, we make two assumptions for simplicity
reasons :

1. The matrix A is square

2. All independent components have identical distribu-
tions.

The research of the independent components is a two-
step analysis. First, we estimate the mixing matrix A using
the observation vector x. Then, we calculate the inverse of
A, denoted W, which will allow to simply obtain the inde-
pendent components : s = Wx.
To estimate one of the independent components we consi-
der a linear combination of xi, y = wTx where w is a
vector to be determined. Thus y is equal to one of the in-
dependent component if the wT are the rows of W. By
making the change of variables z = ATw, the vector y is
equal to zT s and is a linear combination of si. According
to the central limit theorem zTs is more Gaussian then
any of the si and becomes less Gaussian when it equals to
one of the si. Therefore w is a vector that maximizes the
non-gaussianity of wT x.

One popular measure of non-gaussianity is negentropy
that is based on information theoretic quantity of entropy
and is given by : J(y) = H(yGauss) − H(y) where yGauss

is a random Gaussian variable with the same covariance
matrix as y and H(y) is the entropy of y. As a Gaussian
variable has the largest entropy among all random variables
of equal variance, maximizing non-gaussianity is equivalent
to maximizing the negentropy.
One popular algorithm that performs ICA is FastICA, a

fixed point iteration scheme based on maximization of ne-
gentropy as a measure of non-gaussianity [Cover, 1991]. We
have chosen to use FastICA in this study.

III. Proposed Scheme

Figures 4(a) and 4(b) depict the block diagrams of the
learning and the prediction phases of the proposed scheme,
respectively.

The training system proposed to learn the relation bet-
ween simulations and measurements is based on Artificial
Neural Networks (ANN) [Haykin, 1998]. This solution is
chosen because of :

1. The relatively easy use of ANNs based on training-
prediction cycles, and

2. Its powerful capacity to model extremely complex non
linear functions.

In our proposed scheme we use one of the important class
of ANNs : the MultiLayer Perceptrons (MLP) that consists
of an input layer, one or more hidden layers, and an output
layer. All these layers are formed by computational nodes.
A node or a perceptron is the basic building block of a
MLP and is composed of a linear combiner with adjustable
weights or free parameters. The algorithm used to train the
MLP is the very popular error Back Propagation (BP) al-
gorithm which is the generalization of the famous gradient
based Least-Mean-Square (LMS) algorithm.

As we are interested in statistical properties of the data
rather than individual sample values, we propose that the
neural network works on probability densities. Therefore,
the data samples are first transformed to distributions (i.e.
histograms) before entering the neural network and the
training is done on histograms (hsim and hmes). Each in-
put/output of the neural network corresponds to a histo-
gram bin. Thus, the number of inputs/outputs is determi-
ned by the number of histogram bins as well as the number
of variables to predict.

For most of the cases, the system variables that are to be
predicted are inter-correlated. Thus when we are interested
in more than one variable, we have to use the joint distri-
butions (i.e. multi-dimensional histograms) to conserve the
joint statistical features and not to suffer from loss of mu-
tual information between variables. However, the problem
of using multi-dimensional distributions is that the number
of inputs-outputs of the ANN increases exponentially, thus
makes it rapidly untractable.
To overcome this problem we propose to use Independent
Component Analysis (ICA) and work with independent
components rather than with inter-correlated variables.
Thus, the Neural Network can perform its learning and
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Fig. 4. Proposed scheme

generalization tasks on one-dimensional histograms of inde-
pendent components without any loss of information. Ano-
ther motivation for using ICA is the possibility to reduce
the dimension of the data since the first step of the ICA
algorithm is Principle Component Analysis (PCA) that
makes possible the reduction of the number of significant
components through Single Value Decomposition.

In the learning phase the following steps are followed :

1. The measurement data are first formatted : For
example, each variable can be divided by its maximum va-
lue. This data scaling guarantees the non dominance of one
variable with respect to another.

2. The formatted data are centered, i.e. the mean vector
m = E(xmes) of the data is subtracted so to make xmes a
zero mean variable.

3. The eigenvalues and eigenvectors of xmes are computed.

4. The measurement data xmes are linearly transformed
so that a whitened vector is obtained. The whitening is
done using the eigenvalue decomposition (EVD) of the co-
variance matrix E(xmesx

T
mes) = EDET where E is the

orthogonal matrix of eigenvectors of the covariance matrix
and D is the diagonal matrix of its eigenvalues.

5. The ICA matrix is computed using the FastICA algo-
rithm.

6. Using matrix A, we obtain a centred estimation of in-
dependent component ŝmes = A−1(xmes − m)

7. The mean vector of independent components given by
A−1m is added to the centred estimates so that smes =
ŝmes + A−1m

We note here that there is only one computed ICA matrix :
the one computed on the measurement data. This same ma-
trix will be used for simulation data. Thus, we use the same
coordinate system (same ICA matrix) and the existence of

a mapping between simulations and measurements to be
learned is guaranteed.

Since the neural network has performed its learning on
independent distributions, the outputs of the trained MLP
are supposed to be independent histograms. In the predic-
tion phase, the raw data (sresult) are obtained by calcula-
ting the inverse of the histogram transformation. Then the
inverse of the computed ICA matrix, A, is applied to data
yielding dependent components, i.e xresult = Asresult. Fi-
nely, the data are formatted according the scaling rules
used in the learning phase.

In the chain shown in figure 4, the raw data samples
(measurements and simulations in the learning phase,
only simulations in the prediction phase) are first passed
through ICA block yielding independent components, fol-
lowed by a histogram block that forms one-dimensional his-
tograms of each incoming data. Finally, the histogram bins
form the inputs of the MLP for learning/prediction pur-
poses. In the prediction phase, the outputs of the MLP are
passed through an inverse chain to obtain the enhanced
predictions.

IV. Results

We have applied the proposed method to simulations of
third generation (3G) Radio Networks using our Radio Net-
work Planning (RNP) tool that performs Monte Carlo si-
mulations of the Radio Access Network (RAN) according to
predetermined traffic distributions and propagation model
including correlated shadowing. It calculates the UpLink
(UL) and DownLink (DL) transmission powers by taking
into account phenomena such as mobility, macro diversity,
admission control, load control, power control etc. At the
output, it provides simulation results that consist of radio
and quality indicators (UL/DL transmission powers and



Fig. 5. 3G Radio Access Network and performance indicators

interferences, call dropping rate, call blocking rate, etc.).
The quality indicators can be calculated for base stations,
mobiles, or the whole network (voir figure 5).

The RNP tool has two operation modes : Static mode
and dynamic mode. In the static mode, each Monte Carlo
draw is an independent snapshot of the network whereas
in the dynamic mode, subsequent draws are realizations of
the network at successive time instants and therefore are
correlated. In this work, we have confined our attention to
the static mode.

The simulations yield two variables : Uplink Load (ULL)
and Downlink Load (DLL) for each station in the net-
work, for each snapshot. For test purposes, we have de-
cided to create synthetically our measurement data with
the RNP tool by modifying certain parameter(s). In other
words, we conduct separate simulations with different pa-
rameters/configurations to obtain measurement data and
simulation data. The measurement data are obtained by
setting the target SIR UL (Signal-to-Interference Ratio in
UL) parameter to -20 dB and the simulation data are ob-
tained by setting the same parameter to -18 dB.

The proposed scheme is tested on a realistic UMTS net-
work. The MLP used has one hidden layer having the same
number of hidden neurons as the input and output layers.
The method is applied to 2 stations and 2 indicators (ULL
and DLL) with 20 bins in each histogram. For illustration
purposes, we give the results by scatter plots. Each point
in the scatter plot corresponds to a snapshot data sample.
The vertical axis corresponds to the ULL and the horizontal
axis to the DLL. The numerical results of the comparison
are given by the 2-D Kolmogorov Smirnov test (KS-test)
[Fasano and Franceschini, 1987] that determines the dif-
ference between two datasets. According to this test, two
datasets are supposed to be coming from the same distribu-
tion if the value returned by the KS-Test is close to zero. If
the two datasets are far from each other the KS-Test return
a value near to 1.

Figure 6 shows the results of the learning phase where
correlated raw data are directly used to train the MLP
(we do not use ICA preprocessing). The black points cor-
respond to measurements, dark grey points to simulations
and the light grey points correspond to the outputs of the
proposed scheme. Note that these are the results of the
learning phase that are obtained by passing the simulation
data set of the learning phase through the trained MLP. As
shown in this figure the MLP cannot perform its learning

on raw data (the predicted-data distribution is far from the
measurement distribution : KS distance =0.23 ).

To show the efficiency of the ICA processing module, we
have also made a second test in which the MLP learning
is performed with independent histograms rather than de-
pendent ones. We have compared results using ICA with
results when only PCA is used instead of ICA. Figure 7
shows that the MLP can perform its learning very well
thanks to the ICA processing block. Furthermore compa-
ring results given in figures 7 and 8, ICA (KS distance =
0.069 ) is more efficient than PCA (KS distance = 0.12 ).
All these results are summarized in table I.

Fig. 6. Learning results without ICA use

V. Conclusion

In this paper we propose a new method to enhance the
predictions of a system simulator using measurements that
makes use of both a priori (models) and a posteriori infor-
mation (measurements). For this purpose we use a Multi-
Layer Perceptron (MLP) Artificial Neural Network (ANN)
with BackPropagation (BP) that finds an approximation
of the stochastic transfer function between simulations and
measurements. In the proposed scheme we propose to use
Independent Component Analysis (ICA) as a preproces-
sing block that performs a coordinate transformation. This
transformation will be used in the learning and prediction
phases of the proposed scheme. With such a transforma-
tion we are able to work with multidimensional variables



TABLE I: Comparison of 2-D Kolmogorov Smirnov Distance

Without ICA use With ICA use With PCA use
Mesurement-Simulation 0.737 0.737 0.737
Mesurement-NN Result 0.23 0.069 0.12

Fig. 7. Learning results with ICA use

Fig. 8. Learning results with PCA use

without losing their mutual statistical information and en-
suring a tractable computational complexity.
We have applied the proposed method to simulation results
of a 3G Radio Network Planning tool where we have used
a synthetically generated measurement data (the synthetic
measurement data is also generated by the RNP tool by
modifying certain parameters). The results show that the
proposed scheme using ICA is able to learn and predict the
stochastic transfer function between simulations and mea-
surements. We have show also that ICA performs better
than PCA. Future work will include testing this method
on real measurement data, and generalizing its use in our
RNP tool.
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